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Abstract- 

 In general for calculation of natural frequencies discrete system model is used. In case of cantilever beam with tip mass, 

transverse stiffness of the beam and tip mass is used to calculate natural frequency of the beam. This method may generate wrong value 

of 1st natural frequency. In addition to this it is not possible calculate higher natural frequencies of the beam with 1 DOF model. In this 

paper natural frequencies of the cantilever beam with tip mass are calculated using Euler-Bernoulli beam theory. Mathematical model to 

calculate natural frequencies is given. 1st natural frequencies of the beam for various mass ratios are obtained using ANSYS modal 

analysis module. In addition to this natural frequencies of the beam for various mass ratios considering system as 1 DOF are calculated. 

Results obtained from all three methods are compared. For lower mass ratios 1 DOF model shows higher values of natural frequencies 

than continuous system. At higher values of mass ratio natural frequencies obtained from all the three models shows less variation. 

Keywords- Cantilever beam with tip mass, Natural frequencies, Euler-Bernoulli beam, 1 DOF. 

1. Introduction- 

 In machines, rotating and moving parts cause vibration problems. Vibration problems lead to excessive stresses, undesirable 

noise, looseness of parts and partial or complete failure of parts [4]. Every part in the machine is subjected to vibration due to primary 

mover. There have been many cases of systems not meeting performance targets because of resonance, fatigue and excessive vibration 

of a component. Each part in the machine has tendency to oscillate with large amplitude at certain frequencies, these frequencies are 

known as natural frequencies [6]. 

 It is therefore necessary to study these natural frequencies and find ways to avoid resonance. In general for calculation of 

natural frequencies discrete system model is used. In case of cantilever beam with tip mass, transverse stiffness of the beam and tip 

mass is used to calculate natural frequency of the beam. This method may generate wrong value of 1st natural frequency. In addition to 

this it is not possible to calculate higher natural frequencies of the beam with 1 DOF model [4].   

In order to have correct values of natural frequencies system should be considered continuous one. Euler-Bernoulli beam 

theory can be used to model the beam as continuous system. After modeling system as continuous one system will have infinite natural 

frequencies. But as amplitude of vibration will be lower at higher natural frequencies so that they can be neglected. Lower natural 

frequencies are important in almost all applications.    

Erturk et al.[1] have given analytical modal analysis of linear transverse vibrations of an undamped Euler-Bernoulli beam 

with clamped-free boundary conditions and a tip mass rigidly attached at the free end. Authors started with giving classical equation of 

Euler-Bernoulli beam for undamped case. Then boundary conditions for free and clamped end are given. While giving boundary 

conditions authors have considered effect of tip mass. Values of shear force and moment at boundaries included terms involving effect 

of tip mass. For solving governing equation of beam author used method of separation of variable. By this method authors separated 

terms of space and time response. For finding the values of eigen values and convective term of response author used differential 

eigenvalue problem method. By using solution natural frequencies and modal response (space term) can be calculated. Ghodge et al.[2] 

have designed cantilever type of absorber considering beam as single degree of freedom system. Absorber used is mass tunable. Test 

setup was designed for cantilever and simply supported beam. Authors also calculated various modes of vibration using ANSYS modal 

analysis solver.  

In this study, natural frequencies are calculated using three methods- Analytical model, 1 DOF model and ANSYS modal 

analysis solver. Results obtained from all these three method are compared.  
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2. Mathematical modeling  

In this chapter, Mathematical model for modal analysis of cantilever beam with tip mass considering Euler-Bernoulli beam is 

given for calculation of natural frequencies. 

2.1.  Modal analysis of cantilever beam with tip mass. 

The schematic diagram of cantilever beam with tip mass is given below in figure (2.1), 

 

Figure2.1. - Cantilever beam with attached tip mass [1] 

Nomenclature for mathematical model 

E   = Young’s modulus of beam in MPa 

I = Moment of inertia of beam about neutral axis 

m = mass per unit length of beam 

A = cross section area of beam 

L = length of beam 

w(x,t) = transverse deflection of beam at any location ‘x’ and at any time ‘t’ 

Φ(x) = special component of  transverse deflection of beam 

η(t) = temporal component of transverse deflection 

𝛾𝑟 = Eigen value for  rth mode of vibration 

𝐼𝑡 = Ist moment of area about neutral axis 

𝛺 = frequency of excitation 

 

2.2.   Mathematical model for Euler-Bernoulli beam 

Let the beam is to be prismatic with cross sectional area of A. For Forced vibrations of the cantilever beam governing equation of 

cantilever beam with tip mass according to Euler-Bernoulli beam theory is given below [1]. Structural damping of beam is neglected.                                                             

 
𝐸𝐼

𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝑚

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
= 𝑓(𝑥, 𝑡) (1) 

 

For harmonic force applied at location of  𝜀   

 𝑓(𝑥, 𝑡) = 𝐹0𝛿𝑖𝑗(𝑥 −  𝜀) 

 

Where,  

𝛿𝑖𝑗=   Kroneker delta 

 𝛿𝑖𝑗 = 0   𝑓𝑜𝑟   𝑖 ≠ 𝑗 
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       =  1  𝑓𝑜𝑟   𝑖 = 𝑗 

 

Boundary conditions of beam with tip mass is given by, 

 𝑤(0, 𝑡) = 0 

 

 
[
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
]

𝑥=0
= 0 

 

 
[𝐸𝐼

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
+ 𝐼𝑡

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑡2𝜕𝑥
]

𝑥=𝐿

= 0 

 

 
[𝐸𝐼

𝜕3𝑤(𝑥, 𝑡)

𝜕𝑥3
− 𝑀𝑡

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
]

𝑥=𝐿

= 0 

 

Where, 𝑀𝑡= tip mass, 𝐼𝑡= M.I. of the tip mass. 

For modal analysis of beam 

Let’s consider free vibrations of cantilever beam with tip mass. 

Then force term on right hand side of equation (1) becomes, 

 𝑓(𝑥, 𝑡) = 0 

 

For finding the solution of above differential equation method of separation of variable is used. 

According to this method solution can be represented as 

 𝑤(𝑥, 𝑡) = 𝜑(𝑥)𝜂(𝑡) (2) 

 

Given differential equation (equation 1) can be represented by following set of ordinary differential equations.  

 𝐸𝐼

𝑚

1

𝜑(𝑥)

𝑑4𝜑(𝑥)

𝑑𝑥4
= −

1

𝜂(𝑡)

𝑑2𝜂(𝑡)

𝑑𝑡2
 (3) 

 

 𝐸𝐼

𝑚

1

𝜑(𝑥)

𝑑4𝜑(𝑥)

𝑑𝑥4
= 𝛾 (4) 

 

 
−

1

𝜂(𝑡)

𝑑2𝜂(𝑡)

𝑑𝑡2
= 𝛾 (5) 
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Where, 𝛾 = Eigen value variable of the beam. 

 𝑑4𝜑(𝑥)

𝑑𝑥4
− 𝛾

𝑚

𝐸𝐼
𝜑(𝑥) = 0 (6) 

 

 𝑑2𝜂(𝑡)

𝑑𝑡2
+ 𝛾𝜂(𝑡) = 0 (7) 

 

Let’s first solve for the space variable equation (6), 

Equation (6) is homogenous ordinary differential equation of 4th order, whose solution is given by, 

 𝜑(𝑥) = 𝐴 cos (
𝛾

𝐿
𝑥) + 𝐵 cosh (

𝛾

𝐿
𝑥)+Csin (

𝛾

𝐿
𝑥) + 𝐷 sinh (

𝛾

𝐿
𝑥) (8) 

 

For solving equation (8) that is for finding values of A, B, C, D differential eigenvalue problem approach is used. By this method we 

get following characteristic equation of eigenvalue, 

 
1 + cos(𝛾) cosh(𝛾) + 𝛾

𝑀𝑡

𝑚𝐿
(cos(𝛾) sinh(𝛾) − sin(𝛾) cosh(𝛾)) = 0 (9) 

(Higher order terms are neglected in equation (9)) 

Equation (9) has infinite many roots for 𝛾 means system has infinite many eigenvalues means infinite values of natural frequencies. For 

each eigenvalue there is unique associated mode of vibration. Modes of vibration can be represented by eigenfunction  𝜑(𝑥). 

For rth mode of vibration eigenvalue is represented by 𝛾𝑟 and corresponding eigenfunction is given by 𝜑𝑟(𝑥). 

 
𝜑𝑟(𝑥) = 𝐴𝑟 [cos (

𝛾𝑟

𝐿
𝑥) − cosh (

𝛾𝑟

𝐿
𝑥)  +ς𝑟 (𝑠𝑖𝑛 (

𝛾𝑟

𝐿
𝑥) − 𝑠𝑖𝑛ℎ (

𝛾𝑟

𝐿
𝑥))] (10) 

 

Where 𝐴𝑟 =modal constant 

Value of ς𝑟 is given by, 

 sin(𝛾𝑟) − sinh(𝛾𝑟) + 𝛾𝑟
𝑀𝑡

𝑚𝐿
(cos(𝛾𝑟) − cosh (𝛾𝑟))

cos(𝛾𝑟) + cosh(𝛾𝑟) − 𝛾𝑟
𝑀𝑡

𝑚𝐿
(sin(𝛾𝑟) − sinh (𝛾𝑟))

 (11) 

 

Undamped natural frequency of free vibration for rth mode is given by, 

 

𝜔𝑟 = 𝛾𝑟
2√

𝐸𝐼

𝑚𝐿4
 (12) 

 

For solving equation (7) which represent time dependent part in the solution, 

Equation (7) is 2nd order homogeneous differential equation. Its solution is given by[1], 
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 𝜂(𝑡) = 𝐸 cos (𝜔𝑡) + 𝐹 sin (𝜔𝑡) (13) 

 

 

 

3. Results  

3.1.  Beam parameters  

 

Figure3.1- cross section of the beam 

 

Sr. No. Parameter Value 

1 Natural frequency of beam = Around 10 Hz 

2 Cross sectional area = 284 𝑚𝑚2 

3 Length of beam = 1100 𝑚𝑚 

4 Moment of inertia = 29603.7 𝑚𝑚4 

5 Beam stiffness = 13345.019 N/m 

6 Beam material  = Structural steel (ρ= 7850 kg/𝑚3, E=200 GPa) 

 

3.2.  Calculation of eigen values. 

           For calculation of eigen values equation (9) is used. The equation is solved using Matlab. The code for it is attached in appendix 

1.  Results for eigenvalues are tabulated as follows (table (3.1)), 
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Table.3.1. – Eigen values for various mass ratios. 

Mass ratio 
Eigen values 

1 2 3 4 5 

0.5 1.419 4.111 7.190 10.298 13.421 

1 1.248 4.031 7.134 10.257 13.388 

1.5 1.146 3.999 7.113 10.242 13.376 

2 1.076 3.983 7.103 10.234 13.370 

2.5 1.023 3.972 7.096 10.229 13.366 

3 0.981 3.965 7.092 10.226 13.364 

 

            For our application 1st eigen value is of importance. Particularly square of eigen value is important as equation of natural 

frequency involves square of eigen value term. Below graph (figure (3.2)) shows variation of square of eigen value v/s mass ratio, 

 

Figure3.2. - Effect of variation of mass ratio on the square of Eigen value of the beam. 
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3.3.  Calculation of natural frequencies. 

           By using equation (12) natural frequencies are calculated. Table of values for corresponding values of eigen value is given below 

(table 3.2), 

Table3.2. – Natural frequencies of the beam 

Mass ratio 
Natural frequency (Hz) 

1 2 3 4 5 

0.5 16.70526 140.2115 428.8904 879.821 1494.37 

1 12.92164 134.8075 422.2355 872.8292 1487.031 

1.5 10.89577 132.6757 419.7533 870.2781 1484.366 

2 9.605347 131.6161 418.5739 868.9191 1483.035 

2.5 8.6824 130.8902 417.7493 868.0703 1482.148 

3 7.984111 130.4292 417.2785 867.5612 1481.704 

            

As for our purpose 1st natural frequency is important. Its variation with respect to mass ratio is given in figure (3.3), 

 

Figure3.3. - Effect of variation of mass ratio on the natural frequency of the beam. 

 

 

3.4.  1st natural frequencies of the beam using ANSYS modal analysis module. 

Numerical values for the natural frequencies of the beam are obtained using ANSYS modal analysis module. Numerical results 

and analytical results are compared in table (3.3). 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure-3.4.(a,b,c,d,e,f) – Modal analysis of the cantilever beam for various mass ratios (0.5 to  3). 

3.5.  Natural frequencies of the beam using 1 DOF model. 

Transverse stiffness of the cantilever beam is given by [4],  

𝐾 =
3𝐸𝐼

𝐿3
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Material used for beam is structural steel. Material has young modulus of 200 GPa. We used rectangular hollow cross section as shown 

in figure (3.1). Moment of inertia of the beam is 29603.7𝑚𝑚4.  

Natural frequency of the 1 DOF system is given by [4], 

𝑓 =
1

2𝜋
√

𝐾

𝑚𝑡𝑖𝑝

 

By using above equation natural frequencies are calculated for various mass ratios. Results are shown in table (3.3). 

Table3.3. – 1st natural frequencies of the beam. 

Mass ratio  
Tip mass (Kg) 

Analytical value (Hz) Numerical value (Hz) 
1 DOF 

Hz 

0.5 0.891 16.705 16.902 19.478 

1 1.782 12.921 12.930 13.773 

1.5 2.675 10.895 10.754 11.241 

2 3.564 9.605 9.318 9.739 

2.5 4.455 8.682 8.282 8.712 

3 5.346 7.984 7.461 7.952 

 

4. Conclusion  

1. For lower mass ratios (i.e. from 0.5 to 1.5 ) values of 1st natural frequencies obtained from 1 DOF model shows large deviation 

from analytical and numerical results 

2. For higher mass ratios (i.e. from 2 to 3) values obtained from 1 DOF model are nearly same as that of analytical results. 

3. For lower mass ratios, results shows that if we consider beam and tip mass system as 1 DOF model we would generate wrong 

values of 1st natural frequencies. 
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Appendix 

Matlab code for calculation of eigen values and natural frequencies.  

clc;  

close all;  
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clear all;  

syms x; 

 f=1+cos(x)*cosh(x)+x*2*(cos(x)*sinh(x)-sin(x)*cosh(x)); %Enter the Function here  

g=diff(f); %The Derivative of the Function 

 n=input('Enter the number of decimal places:');  

epsilon = 5*10^-(n+1); %x0 = input('Enter the intial approximation:');  

for xit=1:15  

x0=xit; 

 for i=1:100 

 f0=vpa(subs(f,x,x0)); %Calculating the value of function at x0  

f0_der=vpa(subs(g,x,x0)); %Calculating the value of function derivative at x0  

y=x0-f0/f0_der; % The Formula  

err=abs(y-x0); 

 if err<epsilon %checking the amount of error at each iteration  

break  

end  

x0=y;  

end  

y  

xit=xit+1;  

end  

y = y - rem(y,10^-n); 

 

http://www.jetir.org/

